
ABSTRACT: In this paper a statistical multi-scale method for the mechanics parameter predic-
tion of the rock mass with random distribution of multi-scale cracks/joints is presented. First the 
micro-structure of the rock mass with random distribution of multi-scale cracks/joints is 
represented. Then the statistical second-order two-scale method for the mechanics performance 
predictions of the rock mass structure with random cracks/joints distribution is presented, in-
cluding the statistical second-order two-scale expression on the vector-valued displacement, 
strain tensor and stress tensor, and the algorithm procedure of statistical multi-sale computation 
for the mechanics parameters. Finally some numerical results for mechanical parameters for the 
rock mass with random distributions of multi-scale joints/cracks by statistical multi-scale me-
thod are shown.  

 

1 INTRODUCTION 

With the rapid advance of engineering science, especially computing technology, the computa-
tional engineering science is developing very fast. A variety of numerical methods for the pre-
dicting the physical and mechanical performance of materials was developed in last decade. 

According to their micro-structure the composite materials can be divided into two classes: 
composite materials with periodic configurations (Cui et al. 1997 Cui & Shan 2000) and com-
posite materials with random distribution (Li & Cui 2004). A lot of random composite materials 
exist in nature and human life，such as rock mass and concrete (Shan et al. 2002). Due to the 
difference of their micro-configurations it needs to make use of different numerical methods to 
evaluate the physical and mechanical performance of them. 

For the composite materials with random distribution some works have been done for predict-
ing the physics and mechanical properties of random particulate composites (Li & Cui 2005 Yu 
et al. 2008). Many approaches can be used to the calculation of macroscopic stiffness parame-
ters, such as the law of mixture, Hashin-Shtrikman upper and lower bounds method, self-
consistent approach and Eshelby effective inclusion method etc. However, in regard to the pre-
diction for strength parameters there are few theoretical techniques available, and most of them 
are based on the greatly simplification of real composite structures. Till now there is still no 
multi-scale analysis method to predict the physical and mechanical performance of the rock 
mass structure with random joints or/and cracks distribution.  

In this paper a new statistical multi-scale method is presented to predict the mechanical per-
formance of rock mass with random joint and/or crack distribution and related structures.  

The remainder of this paper is outlined as follows. In section 2 the representation of the rock 
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mass with random distributions of multi-scale joints/cracks briefly described. The section 3 is 
devoted to the statistical second-order two-scale formulation for the prediction of the materials 
with random distribution and related structure. In section 4 the algorithm procedure for statistic-
al multi-scale computation of rock mass with random distributions of multi-scale joints/cracks is 
given. In section 5 some numerical results for mechanical parameters of the rock mass with ran-
dom distributions of multi-scale joints/cracks are shown. 

2 MULTI-SCALE REPRESENTATION OF ROCK MASS WITH RANDOM JOINT/CRACK 
DISTRIBUTION 

The materials with random joint/crack distribution, such as rock mass and damaged materials, 
can be represented as follows: all of the joints inside investigated structure are divided into sev-
eral groups in their lengths jl  and 1j j jlε ε +> > . 
 
From the survey of engineering geology and the fitting method of statistic data, for each group of 
joints/cracks the probability distribution of the joints inside structure Ω  can be described as fol-
lows: 
1.  The long joints, whose length l Lα>  and L  is the size of structure Ω , are considered de-

terminate, generally, choose 110α −≈ . 
2.  Choose ( )1,2,j j mε = L  and 1 1 0j jL lα ε ε−> > > >  the statistical model of joints with the 

length jl  satisfied 1j j jlε ε +> >  can be determined in following way: 
    (a)  Specify the density of joint distribution and the distribution model of central points of 

joints, for example, uniform distribution in Ω . 
    (b)  Specify the distribution model for trace lengths of joint surfaces, for example, normal dis-

tribution round the value of some length. 
    (c)  Specify the distribution model for inclinations of joint surfaces in ]2/,0[ π , for example, 

some normal distribution round some angle. And specify the distribution model for 
trends of joint surfaces in ]2/,2/[ ππ− , for example, some normal distribution round 
some angle. 

3.  For most of rock mass structures there is some jointing inside joint surfaces, and it occupies a 
certain thickness. So the thickness of jointing must be specified, for example, it is supposed to 
be a function depended on its trace length. 

4.  The physical or mechanical parameters of intact rock and jointing must be prescribed. 
From previous representation in rock mass structure Ω  one can obtain a sample of every group 

of joints with lengths jl ( 1,2, , )j m= L  where 1j j jlε ε +> > , and then periodically obtain a con-

crete distributions { }( , )ija xε ω  and { }( , )ijhka xε ω on physical and mechanical parameters on Ω . 

As example, a sample distribution for a kind of rock mass is shown in Figure 1. 
 

 
a . Joints in 4ε -screen  b. Joints in 3ε -screen  c. Joints in 2ε -screen  d. Joints in 1ε -screen 
Figure 1. The joint statistical model of the four screen scales in rock mass.  
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3 STATISTICAL SECOND-ORDER TWO-SCALE FORMULATION OF THE 
STRUCTURE WITH RANDOM JOINT/CRACK DISTRIBUTION 
3.1 Statistical two-scale formulation for the composites with random distribution 

In this section based on the representation previously the structures with random distribution of 
one scale joints/cracks is investigated, and it has only same ε -size statistic screen. Its elasticity 
problem with mixed boundary conditions can be expressed as follows: 
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where suppose that ( , )ijhka xε ω (i,j,h,k=1,…,n) are the elastic coefficients of the random dis-
tribution with ε-size periodicity, and the jointing between joint surfaces and matrix are consi-
dered isotropic homogenous materials and continuous transition zones, so { }( , )ijhka xε ω  is 

highly oscillating, but continuously varying. 

Below SSOTS method will be discussed for the problem (1). Let sx x Qξ
ε ε

⎡ ⎤= − ∈⎢ ⎥⎣ ⎦
 denotes 

the local coordinates on 1-normalized cell ofε -cell sQε ⊂ Ω . Then ( ) ( ), ,ijhk ijhka x aε ω ξ ω=  

and ( , ) ( , , )x xε ω ξ ω=u u . Inspired by the paper or books (Cui & Yang 1996 Oleinik et al. 
1992 Jikov et al. 1994), by using constructive way following formulas on SSOTS solution of 
previous problem were obtained: The displacement solution of problem (1) can be expressed as 
follows 
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where 0 ( )xu  is the homogenization solution defined on global Ω , ( )
1

,α ξ ωN  and 

( )
1 2

,α α ξ ωN  ( )1 2, 1, , nα α = L  are n-order matrix-valued functions defined on 1-normalized 
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And ( )
1

,α ξ ωN , ( )
1 2

,α α ξ ωN  ( )1 2, 1, , nα α = L  and 0 ( )xu  are determined  in following 
ways:  
1) For any sample sω , ( ) ( )
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2) From ( ), s
mα ξ ω
1

N , the homogenization elasticity parameters { }ˆ ( )s
ijhka ω  corresponding 

to the sample sω  are calculated in following formula 
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3) One can evaluate the expected homogenized coefficients { }ijhka)  in following formula 
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5) 0 ( )xu  is the solution of the homogenization problem with the homogenized parameters 

{ }ijhka)  defined on global Ω  
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6)  The strains can be evaluated approximately in following formulas: 
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3.2 Computation of the strength 
As the strain and stress tensor anywhere inside the investigated structure are obtained, the elas-
ticity limit strength for the structure made from rock mass can be evaluated. Until now there is 
no strength criterion for the structure of rock mass with lots of random joints or/and cracks. In 
this paper, we employ the strength criterions on homogenous materials and the status of joint 
or/and crack expansions to define the elasticity limit strength of the structure of rock mass. 

It’s worthy to note that the employed strength criterion should be different for the different 
status of intact rock and jointing, such as tension and pression, the maximum principal stress 
theory should be cited for rock mass. In our computation, only the formulation of maximum 
stress criterion is shown. The formulas of other strength criterions can be easily found in text-
book of solid mechanics or mechanics of rock mass. 

The maximum principal stress theory assumes that failure occurs when the maximum prin-
cipal stress 1σ  in the complex stress system equals to that at the yield point in the tensile test, 
where 1σ , 2σ  and 3σ  are the three principal stresses under the three dimensional complex 
stress states. 

For a sample sω , all of strains and stresses inside any ε -cell belonging to the structure can 
be obtained through the formulas presented previously. Then, the strength ( )sS ω  of the struc-
ture with random joint or/and crack distribution is obtained as the elasticity limit criterions is 
reached at some point for the sample sω . Thus to repeat previous calculation so many times, 
from Kolmogorov strong law of the large number, it follows that the expected strength Ŝ  can 
be evaluated by following formula: 

1
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ˆ

M
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s
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S
M

ω
==
∑

                                                       (12) 

However, the expected strength Ŝ  can not totally represent the strength properties of the 
structure of random joint/crack distribution. The yield of some location may lead to the collapse 
of the whole structure. Therefore, the minimal strength of the structure of random joint/crack 
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distribution is sometime worthier than the expected one for the design of rock mass structures. 
The minimal strength can be defined as following formula: 

{ }min 1, ,
min ( )s

s M
S S ω

=
=

L
                                                 (13) 

4 THE PROCEDURE OF MSA COMPUTATION BASED ON SSOTS 

Based on the multi-scale representation of the rock mass with random joint/crack distribution in 
sections 2 and the SSOTS formulation in section 3, the algorithm procedure of predicting the 
mechanical parameters of structure with random joint/crack distribution is following:  
step 1. Generate a distribution model P  of joints or/and cracks based on the statistical charac-

teristics of the random joint or/and crack distribution, and determine the material coeffi-

cients ( ){ }, s
ijhk

xa ωε  on ( )Qε ε  as follows: 
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 where ( )Qε ε
)

 is the domain of intact rock and ( )Qε ε%  the domain of joints and joint-

ing in ( )Qε ε  and { }ijhka  and { }ijhka′  are the material coefficients of them, respec-

tively. 
step 2. Evaluate FE solution ( ) ( )1,  , 1, ,h s

m m nα ξ ω α =
1

N L  of ( ), s
mα ξ ω
1

N  by solving 

problem (5) for s Pω ∈ . Then the sample homogenization coefficients { }ˆ ( )r s
ijhka ω  

can be calculated through formula (6). And then to evaluate FE solution ( )
2

,h s
mα α ξ ω

1
N  

of ( )
2

, s
mα α ξ ω

1
N  ( )1, 1, ,m nα = L  for s Pω ∈  by solving problem (7). 

step 3. For s Pω ∈ , 1, 2,...,s M= , step 1 to 2 are repeated M  times. Then M  sample 

homogenization coefficients { }ˆ ( )s
ijkha ω  are obtained. The expected homogenization 

coefficients { }ijkha)  for the rock mass with random joint or/and crack distribution can 

be evaluated in formulae (7).  

step 4. The homogenization solution 0 ( )xu  can be obtained by solving homogenization prob-

lem (9) with the homogenization coefficients { }ijkha) . For some typical struc-

tures/components, 0 ( )xu  can be exactly obtained from solid mechanics. 

step 5. For the sample sω , evaluate the stain fields anywhere inside the investigated structure 

by ,  h s
m

x
α ω

ε
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N , 
2

,h s
m

x
α α ω

ε
⎛ ⎞
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⎝ ⎠1

N  ( )1, 1, ,m nα = L , and 0 ( )xu  through formu-

las (10) in section 3. The stresses can be calculated through Hooke’s Law (11). 

step 6. By using the strength mS  of intact rock, the strength PS  of jointing and the criterion 

of joint or/and crack expansion, the elasticity limit load of the structure for sω can be 
determined by using iteration procedure. After that, the strength limit of the structure for 

sω , denoted by ( )sS ω , is calculated according to the critical load and the homogeni-
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zation stiffness parameters { }ˆ ( )s
ijkha ω . 

step 7. For s Pω ∈ , 1, 2,...,s M= , step 5 to 6 are repeated. Then M  sample strengths 

( )sS ω  are obtained. The expected strength S
)

 and the minimal strength minS  for the 
structure with random joint/crack distribution can be evaluated in formulae (12) and 
(13). 

If there are so plenty of random joints or/and cracks inside structure and the differences of 
their sizes are very large. One should divide all of random joints or/and cracks into several 
classes according to their size. They are divided into 4 classes, N=4, shown in Figure 1. As 

{ }r
ijhka) , rS

)
 and ( )min  r=4  rS are obtained, they are used as the elastic coefficients and 

strength of new intact rock in the next cycle with r=N-1, i.e. if it’s not the first cycle ( r N≠ ), 
the material coefficient of the intact rock is the homogenized coefficient { }1r

ijhka +) , and the  elas-

ticity limit strength of the intact rock are the strength 1rS +
)

and min
rS , respectively, which are 

evaluated in former cycle with (r+1) class. 
As the last cycle 1r =  is completed, the expected homogenization coefficients { }1

ijhka)  and 

expected elasticity limit strength 1S
)

 and 1
minS  are obtained. And then 1S

)
 and 1

minS  are de-
fined as the effective elastic coefficients and expected / minimal strength of the investigated 
structure/component made from the rock mass with random distribution of multi-scale joints 
or/and cracks. 

5 NUMERICAL EXPERIMENT 

To verify the previous algorithm, the homogenized coefficients of the rock mass are evaluated. 
Three models of random joint distribution in 2-D case are considered in three examples, respec-
tively. 

In every example, the joints are divided into four classes G1, G2, G3 and G4 by the length of 
joint trace, the length of whose statistic screen is denoted by 1ε , 2ε , 3ε  and 4ε , respective-
ly, and the length of joints in every class is supposed to be uniform distribution in a certain in-
terval [a,b], shown in Table 1, and there are 4 joints in every iε -screen, and the thickness of the 
jointing in every joint is 1% of its length. 
 
Table 1.  The screen size and interval of each class
 Statistics screen scale Intervals of each group 
G1 4ε =1m [0.1-0.25] 
G2 3ε =5m [0.5-1.0] 
G3 2ε =15m [2.5-5.0] 
G4 1ε =20m [7.5-10] 
 
And in each example, the material coefficients of intact rock and jointing are supposed to be 
same, shown in Table 2. 

For the first example, the inclination of the joints in each class is supposed to be uniform dis-
tribution between 0o and 360o, denoted by UD (0o, 360o). For the second example, the inclina-
tion of the joints in each class is supposed to be normal distribution with expectation 0o and 
mean square deviation 10o, denoted by ND (0o, 10o). For the last example, the inclination of the 
joints in each group is supposed to be normal distribution with expectation 50o and mean square 
deviation 10o, denoted by ND (50o, 10o). 
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Table 2.  The material coefficients of intact rock and jointing
Intact rock Jointing

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

425.100
043333.333333.8
033333.84333.3

E
EE
EE

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

225.100
023333.313333.8
013333.823333.3

E
EE
EE

 
           
Table 3. The expected homogenized results of each scale screen for UD (0o, 360o)

4ε
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

41441.100
04.9810.23064.7
03064.740086.3

E
EE

EE
3ε

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

40720.100
047708.23272.6
03272.647614.2

E
EE
EE

 

2ε
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3833.900
044810.23528.5
03528.545695.2

E
EE

EE

 

1ε
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3666.800
041843.23623.4
03623.442026.2

E
EE
EE

 
 
 

   
 

a. Joints in 4ε -screen          b. Joints in 3ε -screen          c. Joints in 2ε -screen 
 

  
 
d. Joints in 1ε -screen            e.  Mesh partition   

Figure 2. The statistical model of joints for ND(0o,10o) and mesh partition   
 
 

By virtue of above specified data and the simulation method of the joints, the joints in each 
screen can be easily generated for one sample. In order to show clearly the distribution of the 
joints in the rock mass, the joints in iε -screen are generated as well the joints in the screen 
smaller than iε  together. The distribution model of joints for one sample of UD (0o, 360o), ND 
(0o, 10o) and ND (50o, 10o) is shown in Figure 1, Figure 2 and Figure 3, respectively. 
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a. Joints in 4ε -screen    b. Joints in 3ε -screen  c. Joints in 2ε -screen   d. Joints in 1ε -screen 
Figure 3. The joints statistical model for ND (50o,10o) 

 
 
Table 4 The expected homogenized results of each scale screen for ND (0o, 10o) 

4ε  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

41186.100
047364.23868.6
03868.642589.3

E
EE
EE

3ε
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

40148.100
043089.23815.5
03815.541960.3

E
EE
EE

2ε  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3072.900
049136.13853.4
03853.441271.3

E
EE
EE

 

1ε
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

40148.100
043089.23846.3
03846.340351.3

E
EE
EE

 
                                                               
           
Table 5  Final result 

UD 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3666.800
041843.23623.4
03623.442026.2

E
EE
EE

 

ND(0o,10o) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3755.700
044995.13846.3
03846.340351.3

E
EE
EE

 

 
ND(50o,10) ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3810.93592.23094.2
3592.241873.23194.8
3094.23194.841005.2

EEE
EEE
EEE

 
 
 

The 50 distribution samples of the joints in each screen for every example are sampled. Every 
sample with joints is partitioned as shown in Figure 2.e. And the expected homogenized coeffi-
cients can be calculated by the procedure given in section 4. The detailed results of UD and 
ND(0o,10o) are given in Table 3 and Table 4, respectively. The detailed results of ND (50o,10o) 
are omitted owing to the limitation of space. The final expected homogenized results for UD 
(50o,10o), ND (0o,10o) and ND (50o,10o) are given in Table 5.   

By using SMS method in this paper the elasticity limit strengths of the rock mass with ran-
dom joints/cracks distribution, including tension and compression, bending and twist, have been 
calculated, and the numerical results on expected elasticity strength and minimal elasticity 
strength were obtained. For the space limitation of this paper those on rock mass strength are 
omitted here. 
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6 CONCLUSIONS 

In this paper one kind of structures of rock mass with plenty of joints or/and cracks is consi-
dered, they are defined as the structures of the materials with random distribution of multi-scale 
joints or/and cracks. And the micro-structure of rock mass with plenty of multi-scale joints 
or/and cracks is represented. 

A new statistically second-order two-scale methods for the predicting the mechanics perfor-
mances of them is presented, including the second-order two-scale asymptotic expression on the 
displacement vector, the formulations of the expected homogenization constitutive parameters, 
elasticity limit strength, and the algorithm procedures. 

For some different random distribution models the expected homogenization constitutive pa-
rameters are predicted by SSOTS method. And the numerical experiments show that the micro-
behaviors inside the structure with plenty of joints or /and cracks can be captured exactly by 
SSOTS method. And all of numerical results show that SSOTS method is valid and available. 
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